
Factorization of Feynman graphs at finite temperature

and chemical potential

Olivier Espinosa
Universidad Santa Maŕıa
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Overview

• Perturbative calculations are still needed and/or useful in XXI century
QFT at finite T and µ.

• Remarkable and amusing general property of Feynman loop graphs in
thermal field theories, undiscovered until recently:
“Thermal part” can be simply related to “vacuum part”.

• Result is valid for a general field theory involving scalar, fermionic and
gauge fields.

• Result holds in both Euclidean Time and Real Time (closed time path)
formalisms.

• Result can be extended to non-zero chemical potential.

• Warning: this is a talk about the formalism of thermal QFT
No new physics here! (sorry)
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(Some) previous related work...

• M. Gaudin (Nuovo Cimento, 1965)
In French

• R. Pisarski (NPB, 1988),
Computing finite temperature loops with ease

Abstract. An efficient way of calculating perturbatively at non-zero temperature is to

start with a diagram in momentum space, and then Fourier transform each

propagator in a loop with respect to the (imaginary) time. Discontinuities are read off

from the energy denominators of this non-covariant approach.

• F. Guerin (PRD, 1994),
Rules for diagrams in thermal field theories

Abstract. Sets of rules are proposed that allow one to write down the amplitude

associated with a diagram at temperature T once the energy running around each loop

has been summed over, in the imaginary-time formalism. Alternative forms are given:

one is based on tree diagrams, another one on possible intermediate states. A close

analogy to the T=0 case is obtained. The amplitude’s analytic structure is explicit. A

factorization property is found for the N-point imaginary-time Green functions.



A sample diagram in QED or gφ3

or
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52

3
(p0, p)(p0, p)

Diagram =

∫
[loop spatial momenta kl] γ(T ) (p0, Ei)

γ(T ) (p0, Ei) = T L
∑

loop Matsubara
frequencies ωl

∏
i

1

ω2
i + E2

i

� i = 1,2, . . . , I = total number of internal lines

� Ei =
(
k2

i + m2
)1/2

� ωi = linear combination of p0 and ωl

� ωl = (2πT )nl, nl = integer



Main result

γ(T ) (p0, Ei) = O(T )(Ei)γ
(0) (p0, Ei)

where

γ(0) (p0, Ei) =

∫
dk0l

2π

∏
i

1

k2
0i + E2

i

T = 0 energy loop integral

and

O(T )(Ei) =
I∏

i=1

(1 + ni (1 − Si)) Thermal Operator

defined in terms of

� ni = nBE(Ei) =
(
eEi/T − 1

)−1
Bosonic thermal occupation factor

� Sif(. . . , Ei, . . .) = f(. . . , −Ei, . . .) Reflection operator



Explicit simple example (gφ3 theory)

1

2

(p0 − ωn, p − k)

(ωn, k)

(p0, p)

E1 =
(
k2 + m2

)1/2
, E2 =

(
(p − k)2 + m2

)1/2

γ(T )(p0, E1, E2) =
1 + n1 + n2

ip0 + E1 + E2
− n1 − n2

ip0 + E1 − E2
+

n1 − n2

ip0 − E1 + E2
− 1 + n1 + n2

ip0 − E1 − E2

= O(T )(E1, E2)γ
(0)(p0, E1, E2)

where

γ(0)(p0, E1, E2) =
1

ip0 + E1 + E2
− 1

ip0 − E1 − E2

and

O(T )(E1, E2) = (1 + n1 (1 − S1)) (1 + n2 (1 − S2))

= 1 + n1 (1 − S1) + n2 (1 − S2) + n1n2 (1 − S1) (1 − S2)



Explicit simple example (gφ3 theory) (continued)

Note that

(1 − S1) (1 − S2)γ
(0)(p0, E1, E2) = (1 − S1) (1 − S2)

[
1

ip0 + E1 + E2
− 1

ip0 − E1 − E2

]
≡ 0

So,

γ(T )(p0, E1, E2) = [1 + n1 (1 − S1) + n2 (1 − S2)]γ
(0)(p0, E1, E2)



Generalization
The Thermal Operator can also be written as:

O(T )(Ei) := 1+
I∑

i=1

n(Ei)(1 − Si) +
∑′

〈i1,i2〉
n(Ei1)n(Ei2)(1 − Si1)(1 − Si2)

+ · · · +
∑′

〈i1,...,iL〉

L∏
l=1

n(Eil
)(1 − Sil

).

where

• the indices i1, i2, . . . run from 1 to I.

• 〈i1, . . . , ik〉 represents a given set of k internal lines.

•
∑′

means that those tuples 〈i1, . . . , ik〉 that are cut sets of the diagram must be
excluded.

For instance, for the diagram
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O(T ) has no terms with n1n2 or n4n5.
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The Thermal Operator

Properties of O(T )(Ei):

• it is real and linear

• it is (effectively) of degree L in the ni’s [in the Euclidean formalism]

• it is independent of the external energies p0 = {p01, p02, . . .}

• it is different for each diagram

• it is an idempotent operator: O(T )(Ei)O(T )(Ei) = O(T )(Ei)



Proof

� Use of Gaudin’s method to perform Matsubara sums (J.P.Blaizot+Reinosa
hep-ph/0406109, O.E. hep-ph/0501273))

� Use of mixed time-momentum representation
(F.Brandt+A.Das+O.E.+J.Frenkel+S.Perez, hep-th/0508067)

Zero temperature

∆(0)(τ, E) =

∫ ∞

−∞

dp0

2π
e−ip0τ∆(0)(p0, E)

=
1

2E

[
θ(τ)e−Eτ + θ(−τ)eEτ

]
, −∞ < τ < ∞

Finite temperature

∆(T )(τ, E) = T

∞∑
n=−∞

e−ip0τ∆(0)(p0, E)
∣∣∣
p0=(2πT )n

=
1

2E

[
θ(τ)

{
(1 + n(E)) e−Eτ + n(E)eEτ

}

+θ(−τ)
{
n(E)e−Eτ + (1 + n(E)) eEτ

}]
, −1

T
< τ <

1

T



Proof (continued)

It holds that

∆(T )(τ, E) = [1 + n(E)(1 − S(E)]∆(0)(τ, E)

= O(T )(E)∆(0)(τ, E)

Basic (bosonic) thermal operator

Then

• O(T )(E) is independent of the time variable τ

• Thus, O(T )(E) can be taken out of finite temperature loop integrals
(which contain integrations over internal times over the ranges
0 ≤ τ ≤ 1/T )

• It can be shown that the integration ranges can then be extended to
−∞ < τ < ∞ (thermal operator annihilates added parts)



Real-time (closed time path) formalism

Matrix valued propagators

∆(T )
ab (p) = ∆(0)

ab (p) + 2πn(|p0|)δ
(
p2 − m2

)
, a, b = +, −

Mixed time-momentum representation

∆(t, 	p) = ∆(t, E) =

∫ ∞

−∞

dp0

2π
e−ip0t∆(p0, 	p)

Same basic (bosonic) thermal operator

∆(T )
ab (t, E) = [1 + n(E)(1 − S(E)]∆(0)

ab (t, E)

= O(T )(E)∆(0)
ab (t, E)

• O(T )(E) is the same for all propagator components ab

• Same proof as in the Euclidean formalism, but simpler:

• No need to extend the ranges of internal t-integrations
(−∞ < t < ∞ in both cases)



Extension to fermions

For a fermionic line:

O(T )
B (E) = 1+nBE(E)(1 − S(E)) → O(T )

F (E) = 1−nFD(E)(1 − S(E))

(diagonal in spin space)

Fermionic propagator at finite temperature

S(T )
ab (t, 	p) = O(T )

F (E)S(0)
ab (t, 	p)

Fermionic propagator at zero temperature

S(0)
++(t, 	p) =

1

2E

[
θ(t)A(E)e−i(E−iε)t + θ(−t)B(E)ei(E−iε)t

]
S(0)

+−(t, 	p) =
1

2E
B(E)eiEt

S(0)
−+(t, 	p) =

1

2E
A(E)e−iEt

S(0)
−−(t, 	p) =

1

2E

[
θ(t)B(E)ei(E+iε)t + θ(−t)A(E)e−i(E+iε)t

]

where

A(E) = γ0E − 	γ · 	p + m, B(E) = −γ0E − 	γ · 	p + m



Non-zero chemical potential

Zero temperature (scalar case, Euclidean formalism):

∆(T=0,µ)(p0, E) =
1

(p0 − iµ )2 + E2

∆(T=0,µ)(τ, E) = eµτ∆(T=0,µ=0)(τ, E)

=
1

2E

[
θ(τ)e−(E−µ)τ + θ(−τ)e(E+µ)τ

]

Finite temperature and chemical potential

∆(T,µ)(τ, E) =
1

2E

[
θ(τ)

{
(1 + n−) e−(E−µ)τ + n+e(E+µ)τ

}

+ θ(−τ)
{

n−e−(E−µ)τ + (1 + n+) e(E+µ)τ
}]

where

n± = n(E ± µ)



Non-zero chemical potential (continued)

Introduce a modified T = 0, µ = 0 propagator (Inui+Kohyama+Niegawa,

hep-ph/0601092),

∆̃(0,0)(τ, E, E+, E−) =
1

2E

[
θ(τ)e−E−τ + θ(−τ)eE+τ

]
Then:

∆(0,µ)(τ, E) = ∆̃(0,0)(τ, E, E+, E−)
∣∣∣
E±→E±µ

≡ S(µ)∆̃(0,0)(τ, E, E+, E−)

and

∆(T,µ)(τ, E) = S(µ)
[
1 + N̂(1 − R(E))

]
∆̃(0,0)(τ, E, E+, E−)

≡ O(T,µ)(E)∆̃(0,0)(τ, E, E+, E−)

where

R(E)f(E, E±) = f(−E, −E∓)

N̂f(E, E±) = n(E±)f(E, E±)

S(µ)f(E, E±) = f(E, E ± µ)

Extension to fermions: hep-th/0601224 and 227, PRD (2006)



Outlook

But is it useful?

For instance: retarded self-energy ΠR(ω,p) = −Πβ(i(ω + iε),p)

ImΠR(ω,p) ∼ decay rate of particle propagating in the thermal medium

Im γ(T ) (i(ω + iε), E) = Ô(T )(E) Im γ(0) (i(ω + iε), E)

(reproduces Weldon’s rules [1983])

Other “applications”? Please let me know!
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Im γ(T ) (i(ω + iε), E) = Ô(T )(E) Im γ(0) (i(ω + iε), E)

(reproduces Weldon’s rules [1983])

Other “applications”? Please let me know!


